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Abstract. Simple stochastic exchange games are based on random allocation of finite resources. These
games are Markov chains that can be studied either analytically or by Monte Carlo simulations. In partic-
ular, the equilibrium distribution can be derived either by direct diagonalization of the transition matrix,
or using the detailed balance equation, or by Monte Carlo estimates. In this paper, these methods are
introduced and applied to the Bennati-Dragulescu-Yakovenko (BDY) game. The exact analysis shows that
the statistical-mechanical analogies used in the previous literature have to be revised.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 02.50.Cw Prob-
ability theory

1 Introduction

Agent-based models used for simulating the allocation of
finite resources in economics include g agents that can
interact. These interactions can be direct and can include
both two-body and many-body terms, but they can also be
indirect, through some coupling and feedback mechanism
with an external field.

Each agent i is characterized by a certain quantity ni,
which represents either size, or wealth or another relevant
quantity. The interactions determine a variation of ni as
a function of time. In the models, the evolution of the
system can be described both in continuous time and in
discrete time. In this framework, it is worth mentioning
the so-called Interacting Particle Systems paradigm that
includes, as special cases, percolation, the Ising model, the
voter model, and the contact model [1].

In general, these models are Markov chains or conti-
nuous-time Markov processes. Therefore, there is a full
set of mathematical tools to analyze them and compute
the equilibrium distribution. In this paper, however, the
focus is on conservative models, where the total number
of agents, g, and the total size or wealth, n =

∑g
i=1 ni,

are conserved by the dynamics.
John Angle has introduced the so-called One Param-

eter Inequality Process (OPIP) that can be defined as
follows. Let us suppose that there are g players in a
room, each of them with an initial amount of money,
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ni(0) = n/g. Two individuals are randomly selected to
play against each other. They flip a coin and the winner
gets a fixed fraction, ω, of the loser’s money. Then the
game is iterated. If j and k are the selected players at
step t, their amount of money at step t + 1 is given by:

nj(t + 1) = nj(t) + ωd(t + 1)nk(t) − ω(1 − d(t + 1))nj(t),

and

nk(t + 1) = nk(t)− ωd(t + 1)nk(t) + ω(1 − d(t + 1))nj(t),

where d(t) is a Bernoullian random variable assuming the
value 1 with probability 1/2 or the value 0 with probability
1/2. Angle has studied the equilibrium distribution for the
OPIP by means of Monte Carlo simulations and analytical
approximations [2–4].

The Bennati-Dragulescu-Yakovenko (BDY) model de-
scribed in [5,6] and rediscovered in [7] is very similar to
the OPIP, but there is an important difference. After the
coin toss, the winner receives a fixed amount of money, d.
Indebtedness is impossible: players reaching ni = 0 cannot
lose money any more. If they are selected to play and they
lose, they stay with no money, if they win, they get the
fixed amount of money from the loser. On the contrary,
in the OPIP, very poor agents always lose only a fraction
of their money, and they never reach the situation ni = 0.
In the OPIP, the variables ni are intrinsically continu-
ous, whereas in the BDY model they can be considered
discrete.
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To summarize, the BDY game can be described as
follows. Let us consider a system of g > 1 individuals
(agents) who share n coins, n ≥ g. At each discrete time
step two agents are chosen, and they toss a coin. At the
end of the bet, the winner has one more coin and the loser
has one coin less (d = 1 is assumed, without loss of gener-
ality). Agents’ choice is random (i.e. each distinct couple
has the same probability to be extracted) and each bet is
fair. If the loser has no coins, then the move is forbidden
and a new couple of players is extracted. An equivalent
formulation of the game, avoiding forbidden moves, is the
following. An agent is chosen randomly among all those
having at least one coin, and this agent is declared to be
the loser; the winner is chosen randomly among all agents.

This paper will be devoted to an analysis of the BDY
game. In Section 2, the basic random variables for the de-
scription of the game will be introduced. Section 3 will
be devoted to the methods of solution and it is the core
section of this paper. Finally, in Section 4 a critical dis-
cussion of the results will be presented. The reader will
find further mathematical details in an appendix.

2 Random variables

In the BDY game, as well as in similar exchange games,
one has to allocate n coins among g agents. In the follow-
ing, a random variable will be denoted by a capital letter:
A, whereas a will refer to a specific value or realization.

The most complete description of the game states is
in terms of coin configurations: X = (X1, . . . , Xn). Each
random variable Xi is associated to the ith-coin, and its
range is the set of agents; for instance, X7 = 3 denotes that
the 7th-coin belongs to the 3rd-agent. The total number
of configurations for n coins distributed among g agents
is gn. This can be called the coin description.

The second (and most important in the present case)
description is in terms of coin occupation numbers, Y =
(Y1, . . . , Yg), where the random variable Yj denotes the
number of coins (the wealth) of the jth-agent. If the set
of configurations, X, is known, then Yj |X = # {Xi : Xi =
j, i = 1, ..., n}, that is the value of Yj conditioned on X is
the number, nj , of all Xi equal to j. Then, one can de-
fine Y = n := (n1, . . . , ng) as the set of occupation num-
bers; they satisfy the constraint

∑g
1 ni = n. This can be

called the agent description. It tells us the number of coins
(wealth) of each agent. The total number of distinct agent

descriptions for g agents sharing n coins is
(

n + g − 1
n

)

.

The less complete description is in terms of coin oc-
cupancy numbers or partitions: Z = (Z0 . . . Zn), where
Zh|Y = #{nj = h, j = 1, ..., g}, that is the number
(not the names or labels) of agents with h coins. This
is the frequency distribution of agents, commonly referred
to as wealth distribution; it is an event, not to be confused
with a probability distribution. The constraints for Z are∑n

0 zi = g,
∑n

0 izi = n. For the BDY game, the number
of agents without money, z0, is very important. Its com-
plement is k = g − z0, the number of agents with at least
one coin.

3 Methods of solution

3.1 An irreducible Markov chain

The dynamic mechanism of the BDY game is the hop-
ping of a coin from one agent (the loser) to another (the
winner). The natural description is in terms of agents,
Y = (n1, . . . , ng). Let us suppose that at given time, t, the
agents are described by the state Y(t) = (n1, . . . , ng) :=
n. At the next step, the possible values of Y(t + 1) are:
Y(t + 1) = (n1, .., ni − 1, ..., nj + 1, .., ng) := nj

i , corre-
sponding to the a loss of the ith-agent and a win of the
jth-one. The transition probability between these states
is:

P (nj
i |n) =

1 − δni,0

g − z0(n)
1 − δi,j

g − 1
(1)

where the first term, (1 − δni,0)/(g − z0(n)) = (1 −
δni,0)/k(n), describes the random choice of the loser
among the agents with at least one coin (ni > 0), and the
second term, (1− δi,j)/(g − 1), is the probability that the
jth-agent is the winner. As also an agent with zero coins
can be a winner, there are no absorbing states. Note that
in equation (1) the assumption is made that coins nec-
essarily change agent; if one admits that coins can come
back to the loser, the second term simplifies to 1/g, the
dynamics slightly changes, but the equilibrium distribu-
tion is not affected. Considering both the intuitive mean-
ing of the game and the formal transition probability (1),
the sequence Y(0),Y(1), ...,Y(t) is a discrete-space and
discrete-time Markov process, i.e. a finite Markov chain;
every state can be reached from any other state, the set of
states is irreducible, and no periodicity is present. Hence,
there exists an invariant probability distribution, and
this distribution coincides with the equilibrium one. This
means that limt−>∞ P (Y(t) = n|Y(0) = n′) = π(n), in-
dependently from the initial state Y(0) = n′. Moreover,

π(n) >0 holds for all the
(

n + g − 1
n

)

possible occupation

numbers.

3.2 Direct enumeration and Monte Carlo sampling

The direct enumeration method can be used to study
the game when g and n are not too large. To il-
lustrate the method, let us consider the case g =
n = 3. The total number of agent descriptions is
10: (0, 0, 3); (0, 3, 0); (3, 0, 0); (0, 1, 2); (1, 0, 2); (1, 2, 0);
(0, 2, 1); (2, 0, 1); (2, 1, 0); (1, 1, 1). The transition matrix
between these states can be directly computed by using
the rules of the game. For instance, the state (0, 0, 3) can
only go into the two states (0, 1, 2) and (1, 0, 2) with equal
probability 1/2. The state (0, 1, 2) can go into the four
states (1, 0, 2), (0, 2, 1), (1, 1, 1), and (0, 0, 3) and each fi-
nal state can be reached with probability 1/4. These con-
siderations lead to the definition of the following 10 × 10
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transition matrix:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1/2 1/2 0 0 0 0
0 0 0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 0 0 1/2 1/2
0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6

1/4 0 0 1/4 0 1/4 0 1/4 0 0
1/4 0 0 1/4 1/4 0 0 0 1/4 0
0 1/4 0 1/4 0 0 0 1/4 0 1/4
0 1/4 0 1/4 1/4 0 1/4 0 0 0
0 0 1/4 1/4 0 1/4 0 0 0 1/4
0 0 1/4 1/4 0 0 1/4 0 1/4 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The vector, π, giving the equilibrium probability distribu-
tion can be computed diagonalizing P, as its transpose,
πt, satisfies: πtP = πt. In particular, in this case, one gets:
π(0, 0, 3) = π(0, 3, 0) = π(3, 0, 0) = 1/18, π(1, 1, 1) = 1/6,
and π(0, 1, 2) = π(1, 0, 2) = π(1, 2, 0) = π(0, 2, 1) =
π(2, 0, 1) = π(2, 1, 0) = 1/9. A Monte Carlo simulation
of the game can help in the case of larger systems. The
simulation can sample both the transition matrix and the
equilibrium distribution. Both methods, direct enumera-
tion and Monte Carlo sampling, are limited by the size
of the state space. However, for the BDY game a general
exact solution can be derived.

3.3 Exact solution

As the size of the state space is a rapidly growing function
of n and g, the invariant distribution can be investigated
via the detailed balance equation [8].

Let us consider two consecutive states: (n1, .., ni, ...,
nj , .., ng) and (n1, .., ni −1, ..., nj +1, .., ng), with the con-
ditions ni > 0 and i �= j . The direct flux is given by

π(n)P (nj
i |n) = π(n)

1
g − z0(n)

1
g − 1

;

the inverse flux is

π(nj
i )P (n|nj

i ) =π(nj
i )

1
g − z0(n

j
i )

1
g − 1

.

The two fluxes are equal if

π(n)
1

g − z0(n)
1

g − 1
= π(nj

i )
1

g − z0(n
j
i )

1
g − 1

,

that is if π(n) 1
g−z0(n) = C, where C is a constant.

Hence the probability function:

P (Y = n) =π(n) =Ck(n) = C(g − z0(n)) (2)

is invariant, and it coincides with the equilibrium one.
Two remarks are useful. First of all, in equation (2)

π(n) does not depend on the agent labels but is a func-
tion of the partition Z(n) to which the description Y = n
belongs. This implies that all the sequences Y = n′ and
Y = n are equiprobable, if n′ and n belong to the same Z,
that is if n′ is any permutation of n. Therefore, the random

variables (Y1, . . . , Yg) are exchangeable [8], and they are
also equidistributed, once equilibrium has been reached
and equation (2) holds. All n belonging to the same Z
being equiprobable, one gets for the partition probability
distribution:

Π(z) =
g!

∏n
0 zi!

π(n) = C
g!

∏n
0 zi!

(g − z0(n)). (3)

Secondly, only those agent descriptions sharing the same
number of agents without coins have the same probabil-
ity. Indeed, the probability of a given occupation vector n
depends on z0(n), and, thus, it is not uniform. The reader
is invited to verify this property in the particular case
g = n = 3 described in the previous subsection.

The hypothesis of equal a priori probabilities for all
the agent descriptions seems at the basis of Bennati’s and
Dragulescu and Yakovenko’s analysis of the game, whose
conclusions are not fully correct if one considers equa-
tion (2). This hypothesis on occupation numbers can al-
ready be found in a paper by Boltzmann published in
1868 and leading to the so-called Bose-Einstein statistics
[9–11]. Indeed, if π(n) were uniform in equation (3), one
would get the most probable value of zi by maximizing the
multinomial prefactor subject to the constraints for Z. In
the limit of large systems, the result is z∗i = 1

a e−
i
a . At

the end of the next subsection, the limit n � g � 1 will
be considered for the BDY game, where the exponential
wealth distribution is recovered as an approximation to
the exact solution.

The normalization constant C is computed in the Ap-
pendix, based on the method described in a paper by
Hill [12]. It turns out that:

C =
1

∑g
k=1 k

(
g

k

)(
n − 1
k − 1

) . (4)

Equations (2, 3), together with the normalization (4), give
the equilibrium distributions for the BDY game.

3.4 The average wealth distribution

The number of the agent descriptions, n, and of the par-
titions, Z, is very large for g and n large. Moreover, both
π(n) and Π(z) are multidimensional distributions. In or-
der to search for a quantity that can compared with ex-
perimental observations, one can notice that agents are
exchangeable and any probability distribution is symmet-
ric with respect to the exchange of their labels. Empirical
data are given in terms of the actual wealth distribution z.
At any step, Z(t) = z(t) is just the actual wealth distribu-
tion. If equilibrium is reached, Π(z) represents the multi-
variate sampling distribution, and the vector E(z) denotes
the set of first moments of Π(z). It is useful to define the
marginal average

E(zi) =
∑

z

ziΠ(z). (5)



270 The European Physical Journal B

Z continuously fluctuates around E(z). As a consequence
of the ergodic theorem for Markov chains, one has that
limt→∞

∑ t
s=1 zi(s)

t = E(zi), and this convergence is in
probability. Hence, if the empirical or simulated sequence,
z(0), z(1), ..., z(t), is available, the comparison is possi-
ble between the time average

∑ t
s=1 zi(s)

t and the ensem-
ble average E(zi) predicted from the knowledge of Π(z).
E(zi), the average wealth distribution, will coincide with
the most probable value of Z (say z∗) for large systems.
As already noticed, if π(n) were uniform, then one could
find the most probable value of Z, z∗, by using Lagrange
multipliers, and the functional form of z∗ would be expo-
nential in the Stirling approximation.

In the BDY game, this is not the case. However, as a
consequence of equation (2), π(n) is uniform for all vectors
with the same k = g−z0. The exact value of E(zi) can be
derived analyzing all the agent descriptions with the same
k. Conditioned on k, one gets:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E(z0|k) = g − k⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(zi|k > 1) = k

(
n − i − 1

k − 2

)

(
n − 1
k − 1

) , i = 1, ..., n

E(zi|k = 1) = δi,n, i = 1, ..., n

(6)

and the equilibrium probability of k is

P (k) = Ck

(
g

k

)(
n − 1
k − 1

)

. (7)

Finally, using equations (4), (6) and (7), one gets

E(zi) =
g∑

k=1

E(zi|k)P (k), i = 0, 1, ..., n. (8)

The proof of the above results can be found in the Ap-
pendix. Notice that the thermodynamic limit (n, g, k � 1)

of equation (6) is
E(zi+1|k)

k
� k

n

(

1 − k

n

)i

. Then, the

average fraction of agents with at least one coin follows
a geometric distribution that becomes exponential in the
continuous limit. In this limit, the average wealth distribu-
tion, E(zi), (or the most probable wealth distribution z∗i )
is a mixture of exponential distributions with mixing mea-
sure given by equation (7).

Considering equation (7), one observes that

P (k + 1)
P (k)

=
(g − k)(n − k)

k2

with P (k+1)
P (k) > 1 for k < k∗ = ng

n+g , and P (k+1)
P (k) < 1 for

k > k∗. Therefore, in the case of minimum density, n = g,
one has that P (k) is bell-shaped with flat maximum at
k∗ = ng

n+g and k∗ + 1, as P (k+1)
P (k) = 1, k∗ = g

2 . In the
large density limit n � g, the curve is left-skewed, the
maximum is very close to g, as k∗ = g

1+g/n � g(1 − g/n).
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Fig. 1. Theoretical (cross) and simulated (circle) points for
g = 3, n = 3, after 105 simulation steps.
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Fig. 2. Theoretical (cross) and simulated (circle) points for
g = 3, n = 30, after 105 simulation steps.

Furthermore, if g(1 − g/n) > g − 1, i.e. g2 < n, the maxi-
mum value is just k∗ = g. In the case of large density, the
mixing probability distribution is concentrated on a small
number of values of k, and, thus, if g � 1 the behaviour
is not very different from the single geometric distribution
E(zi+1|g)

g
� g

n

(
1 − g

n

)i

, that becomes the exponential

1
χ

e−
i
χ , χ = n

g . This remark explains why large scale sim-

ulations of the BDY game with n � g appear compatible
with an exponential wealth distribution.

3.5 Comparison with Monte Carlo simulations

In this section, the results of Monte Carlo simulations are
compared with the exact equilibrium wealth distribution.
The simulations have been performed on a standard desk-
top computer equipped with a 1 GHz processor. In the
initial state all the agents are given the same amount of
coins. After an equilibration run of 1000 MC steps, the
values of zi have been sampled and averaged over 105 MC
steps. In the cases reported in Figures 1–3, the execution
time is a few seconds.
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Fig. 3. Theoretical (cross) and simulated (circle) points for
g = 30, n = 30, after 105 simulation steps. The simulation is
too short to reproduce the smaller values of E(zi) for i ≥ 15.

It is interesting to remark that for small values of g
the distribution is strongly dependent on g: it is uniform
for g = 2, linear for g = 3, parabolic for for g = 4,. . ..
Except for the very peculiar case g = 2, the distribution
is decreasing for i > 1, but in some cases E(z0) < E(z1).
The latter feature deserves further investigations. Figure 1
shows the case g = 3 and n = 3, whereas Figure 2 has
again 3 agents, but 30 coins. Figure 3 is the logarithmic
graph for g = 30 and n = 30 to illustrate the approach
to an exponential-type distribution for large values of the
number of agents, g.

4 Discussion and conclusions

Recently, parsimonious exchange games like the one stud-
ied in this paper have been challenged by a group of
leading non-orthodox economists [13,14]. These games
have been introduced in order to explain the allocation of
wealth in the presence of finite resources. In [13,14], they
are considered unrealistic because they do not take into ac-
count the free will of agents to participate in an exchange,
and they include only strictly conserved resources, with-
out production. Incidentally, in games such as the OPIP or
the BDY models, inequality is obtained by pure chance.
Rich agents have no specific individual merit. Based on
their beliefs, some scholars could also dislike this feature.

Replies to the objections in [13,14] have already ap-
peared in two papers by Angle [15] and by McCauley [16].
In particular, Angle presents various arguments in favour
of parsimonious exchange games, including their ability to
reproduce empirical facts [17].

The present authors would also like to stress that, also
thanks to simple exchange models, a new concept of equi-
librium could find its way into Economics: namely Sta-
tistical equilibrium. Many stochastic models in Economics
are Markov chains or Markov processes (see Refs. [18–20]
for recent examples) and the concepts developed in this
paper apply to those cases. These ideas will be the sub-
ject of future papers on the role of statistical equilibrium

in Economics. The reader can consult reference [21] for
an early discussion and references [16,22] for a criticism
on the relevance of thermodynamic equilibrium in Eco-
nomics.

One of the main results of this paper is equation (8),
giving the so-called wealth distribution. As the agent de-
scriptions are not equiprobable, previous statistical me-
chanical arguments have to be revised. In general, the
wealth distribution is not exponential and it becomes ex-
ponential only in the appropriate limit of large density
and large number of agents. It is interesting to study the
rate of approach to equilibrium in the BDY model, but
this will the subject of a future paper of this series. The
next paper of the series, will be devoted to a set of simple
exchange models for the redistribution of wealth that can
be regarded as toy taxation mechanisms.

E.S. acknowledges useful discussion with Giulio Bottazzi,
Mauro Gallegati, Eric Guerci, David Mas, Marco Raberto, and
Alessandra Tedeschi during a Thematic Institute sponsored
by the Exystence EU network held in Ancona in 2005. He is
grateful to J. Angle and J. McCauley for pointing him to refer-
ences [15] and [16], respectively. This work has been partially
supported by MIUR project “Dinamica di altissima frequenza
nei mercati finanziari”.

Appendix

The normalization constant

The total number of possible agent descriptions, n, is

W (g, n) =
(

n + g − 1
n

)

,

and they can be classified in terms of the number of agents
with at least one coin: k = g − z0, k = 1, ..., g. Therefore,
the number of agent descriptions with k fixed agents with
at least one coin is given by all occupation numbers which
allocate n − k coins to k agents, that is

(
n − k + k − 1

n − k

)

=
(

n − 1
n − k

)

=
(

n − 1
k − 1

)

,

while
(

g

k

)

are the different ways to choose the k agents

among the g available. Then

W (k, g, n) =
(

g

k

)(
n − 1
n − k

)

is the number of agent descriptions with k agents with at
least one coin. Indeed, one has:

(
n + g − 1

n

)

=
g∑

k=1

(
g

k

)(
n − 1
n − k

)

,
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and this formula expresses the decomposition of all possi-
ble states in terms of their “support” k. The decomposi-
tion can be re-written as:

W (g, n) =
g∑

k=1

W (k, g, n).

Turning to equation (2), the sum on all states can be di-
vided into a sum over k and a sum over n|k, that is:

1 =
∑

n

π(n) = C
∑

n

k(n) = C

g∑

k=1

kW (k, g, n)

= C

g∑

k=1

k

(
g

k

)(
n − 1
n − k

)

,

which gives the desired normalization constant.

Derivation of equation (6)

The average number of agents whose occupation num-
ber is equal to i is

E(zi) =
g∑

j=1

P (Yj = i) = gP (Yj = i),

the last equality holding as the Y ′s are equidistributed.
P (Yj = i), i = 0, 1, ..., n is the marginal equilibrium prob-
ability of the wealth of the jth-agent, and it is the same for
all j’s. It is necessary to study the marginal distribution
of an agent associated to the agent description probabil-
ity (2) and to the partition probability (3), both holding
at equilibrium. In order to derive formula (6), one needs

E(zi|k) = gP (Yj = i|k) :

the marginal wealth distribution of an agent conditioned
to k = g − z0. One knows from (2) that all agent descrip-
tions Y = n := (Y1 = n1, ..., Yg = ng) with the same k are
equiprobable, and their number is

W (k, g, n) =
(

g

k

)(
n − 1
n − k

)

=
(

g

k

)(
n − 1
k − 1

)

.

Then P (Y1 = n1|k) := P (Y = i|k) is equal to the number
of Y′s such that g − 1 agents share n − i coins divided
by W (k, g, n). The calculation can be divided into three
parts. First, let us consider P (Y = 0|k); one has:

P (Y = 0|k) =
W (k, g − 1, n)

W (k, g, n)
=

(
g − 1

k

)(
n − 1
k − 1

)

(
g

k

)(
n − 1
k − 1

)

=

(
g − 1

k

)

(
g

k

) =
(g − 1)!

(g − 1 − k)!
(g − k)!

g!
=

g − k

g
,

then, let us consider P (Y = i|k) with k ≥ 2, and i > 0; as
there are k − 1 agents left with at least one coin, one has:

P (Y = i|k) =
W (k − 1, g − 1, n− i)

W (k, g, n)

=

(
g − 1
k − 1

)(
n − i − 1

k − 2

)

(
g

k

)(
n − 1
n − k

) =
k

g

(
n − i − 1

k − 2

)

(
n − 1
k − 1

) ,

(9)

finally, for k = 1, one gets: P (Y = i|k = 1) = δi,n

g , for
i > 0, as in this case all coins are concentrated on a sin-
gle agent. Eventually, by determining E(zi|k), one obtains
equation (6) as required.
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